LITTLE CANNON NEAR SOGN

Little Cannon River 1 mile upstream of Sogn (LCS-6)

Location:

River mile: 25

<u>U.S.G.S. quad</u>: Sogn; 44092-D8 <u>Township</u>: T111N R18W S24 <u>Lat./Long</u>: 44^o24'/92^o56'

Other info.:

Type: Midsize stream in midreach of watershed

Stream Order: 4

Drainage area: 56 square miles

Riparian: Fenced pasture

Instream: Gravel, sand, with silt in slow current and pools

Gradient: 7.42 ft/mi

QUALITATIVE HABITAT EVALUATION INDEX (QHEI) SCORING FORM 6/15/95 River Mile 25 Watershed Number Sogn I.CS-6 U.S.G.S. quad Sogn

Date 6/15/95 River Mile 25 Watershed Number Sogn 50	_ 31
Date Of 13/73 U.S.G.S. quad Sogn	•
Date 6/15/95 River Mile 25 Watershed Rumber Sogn LCS-6 U.S.G.S. quad Sogn Township T111N R18W Section 24 Lat./Long. 44°24′/92°56′ Total	QHEI
1. SUBSTRATE (Check ONLY two substrate TYPES). % Pool/Riffle substrates optional. Type Pool Riffle Gravel (5) Gravel (5) Sand (4) Hardpan (3) Silt covered (-1) Silt free (1) Substrates optional. Quality Check all that apply: Silt covered (-1) Silt free (1) Substrates optional. Quality Check all that apply: Silt free (1) Substrates optional. Quality Check all that apply: Silt free (1) Substrates optional.	trate
Comments Silt bars on histor banks and in pools.	
Undercut banks (1)	ver
CHANNEL MORPHOLOGY (Check ONLY one under each category)	
Sinuosity ☐ High (4) ☐ Excellent (4) ☐ Recovered (3) ☐ Moderate (2) ☐ Impound ☐ Impound ☐ Impound ☐ Islands ☐ Impound ☐ Islands	1 Innel
Comments	
□ □ Extensive >100m (3) □ □ Wide 50-100m (4) □ □ Moderate 10-50m (3) □ □ Narrow 5-10m (2) □ □ Very Narrow 1-5m (1) □ □ Conservation tillage (2) □ □ Narrow 5-10m (0)	.5 Parian
Comments	
5. POOL/GLIDE AND RIFFLE/RUN QUALITY Maximum Depth (Check 1)	7
	Riffle
6. GRADIENT 8 7. DRAINAGE AREA (square mile) 56	10

QUALITATIVE HABITAT EVALUATION INDEX (QHEI) SCORING FORM 25 Watershed Number _ 6/11/96 ____ River Mile ____ Sogn ____ U.S.G.S. quad LCS-6 Section 24 Lat./Long. 44°23.97N 92°55.85W Location_ Total QHEI T111N R18W Township ___ 1. SUBSTRATE (Check ONLY two substrate TYPES). % Pool/Riffle substrates optional. Pool Riffle Quality Pool Riffle <u>Type</u> <u>Type</u> Check all that apply: **⊠** □ Gravel (5) □ □ Boulder (7) ☐ Silt covered (-1) □ Sand (4) □ □ Cobble (6) ☐ Silt free (1) □ □ Bedrock (3) ____ __ Substrate □ □ Hardpan (3) _____ ☐ Boulders as slabs (1) □ □ Detritus (2) ☐ ☐ Silt (3) ☐ Embedded (-2) □ □ Sludge (1) _ ☐ ☐ Muck (2) Comments ___ 2. INSTREAM COVER Amount (Check ONLY one) Type (Check ALL that apply) □ Extensive (7) ☐ Deep pools (1) ☑ Undercut banks (1) ☐ Moderate (5) ☐ Oxbows (1) □ Overhanging vegetation (1) Cover ☐ Sparse (3) ☐ Boulders (1) Shallows (in slow water) (1) ■ Nearly absent (1) ☐ Aquatic macrophytes (1) ☐ Logs or woody debris (1) Comments 3. CHANNEL MORPHOLOGY (Check ONLY one under each category) Other **Stability** Channelization Development Sinuosity ☐ Impound ☐ High (3) □ None (4) ☐ Excellent (4) ☐ High (4) Islands ☐ Moderate (2) ☐ Recovered (3) ☐ Good (3) Moderate (3) ☐ Leveed **⊠** Low (1) Channel □ Recovering (2) **⊠** Fair (2) □ Low (2) ☐ Recent or no □ Poor (1) □ None (1) Recovery (1) Comments *River right looking downstream* 4. RIPARIAN ZONE AND BANK EROSION (Check single most predominant, on each bank, under each category) Bank Erosion **RiparianWidth** Flood Plain Quality L R LR L R L R ☐ ☐ ☐ ☐ Forest, swamp (3) □ □ None (5) ☐ ☐ Extensive >100m (5) ☐ ☐ Little (4) ☐ ☐ Fenced pasture (2)☐ ☐ Shrub (4) Riparian ☐ ☐ Wide 50-100m (4) ☐ ☐ Residential, Park (2) ☐ ☐ Moderate (3) ☐ ☐ Moderate 10-50m (3) ☐ ☐ Old field (3) □ □ Heavy (2) ☐ ☐ Urban ☑ Narrow 5-10m (2) □ □ Rowcrop (1) □ Severe (1) ☐ ☐ Very Narrow 1-5m(1) ☐ ☐ Conservation tillage (2) □ None (0) Comments ____ 5. POOL/GLIDE AND RIFFLE/RUN QUALITY **Morphology** Overall Current Velocity Pool Cover Maximum Depth (Check 1) (Check ALL that apply) (Check 1) (Check 1) ☑ Pool width> ☐ Torrential (-1) ☐ Intermittent (-2) ☐ Extensive (3) $\square > 1m(3)$ riffle width (2) ☐ Eddies (1) ☐ Fast (1) ☐ Moderate (2) **⊠** 0.7-1m (2) Moderate (1) ☐ Interstitial (-1) ☐ Pool width = ☐ Sparse (1) □ 0.4-0.7m (1) riffle width (1) **⊠** Slow (1) 8 ■ Nearly absent (0) ☐ Pool width < \Box < 0.4m (0) riffle width (0) Pool/ □ No Pool Riffle/Run Substrate Quality Riffle Riffle/Run Substrate Riffle/Run Depth (Check 1) (Check 1) (Check 1) ☐ Stable (cobble, boulder) (1) ☐ Generally <10cm (1) □ Not embedded (1) ☑ Unstable (gravel, sand) (0) ☑ Generally >10cm Max <50 (2) ☐ Generally >10cm Max >50 (3) ☐ No riffle (0) Comments 7. DRAINAGE AREA 6. GRADIENT (square mile) 56 (ft/mi) Drainage Area 7.4 Gradient

Location LITTLE CANNON NEAR SOGN SITE LCS-6

	1994	1995	1996
SUBSTRATE	9	7	9
_	3	5	3
INSTREAM COVER	10	11	8
CHANNEL MORPHOLOGY RIPARIAN	2.5	2.5	4
CHANNEL QUALITY	8	7	8
		EQ E QUEL	1006 50
GRADIENT 8 QHEI DRAINAGE 10	1994 50.5 QH	1EI 1995 50.5 QHEI	1990 30

EXTENT OF CHANGE IN LOCATION Moved H/D's downstream about 20 meters to a deeper riffle near a small island.

RAPID HABITAT BIOASSESSMENT 1995 139

FISH COVER 6

MACRO COVER 16

EMBEDDEDNESS 13

VELOCITY\DEPTH 18

CHANNEL 19

SEDIMENT 8

RIFFLES 18

CHANNEL FLOW 16

BANK EROSION 7

VEGETATION 6

GRAZING 8

RIPARIAN 4

LITTLE CANNON RIVER (LCS-6) One mile upstream of Sogn Riparian: Pasture Instream: Gravel, sand, silt

Macroinvertebrate Metrics

ertebrate	Menics		100 7	1006	Avarage	Overall Impact
Metric		<u> 1994</u>	<u> 1995</u>	<u> 1996</u>		Overum impact
		50.5	50.5	50.0	50.3	
QHEI			27	30	27.7	Moderate
ICI		26				Moderate
Richness		7.0	16.0	17.0	13.3	
		1.0	3.2	3.1	2.4	Slight
Diversity			0.53	.68	.53	Slight
Equitability		0.38			•••	•
Scraper/Filte	rer Ratio	0.05	0.34	3.46		
		3-6	2-8	3-8	3-6	
Tolerance R	ange	5 0				

Macroinvertebrate	Taxa	and	Numbers	of	Individuals
Macionivercostate					. I Dustantion

Macroinvertebrate		and Num	bers of the	Ulviuuais	ronew)	
[#] = Tolerance Value	es (Sourc	e is Illinois	Environmental	Protection Ag	June 96	<u>July 96</u>
	<u>June 94</u>	<u>July 94</u>	June 95	July 95	June 30	<u> </u>
Stoneflies						
Perlesta [3]	-	-	1	-	-	-
Beetles						1
Dubiraphia [5]	-	-	-	-	3	-
Optioservus [4]	-	-	-	2	8	1
Stenelmis [7]	-	-	-	*	0	-
Macronychus [2]	-	-	2	-	- 1	-
Helichus[4]	-	-	-		1	-
Mayflies					0 1	1
Baetis [4]	3	6	4	-	81	5
Heptagenia [3]	3	1	28	1	-	24
Stenacron [4]	-	-	5	34	- 10	24
Stenonema [4]	-	2	3	3	12	-
Isonychia [3]	6	6	-	-	-	-
Caenis [6]	2	-	7	-	6	-
Tricorythodes [5]	_	1	-	-	-	-
Pseudocloeon [4]	_	-	-	-	25	-
Caddisflies				_		4
Cheumatopsyche	[6] 2	3	5	3	6	5
Hydropsyche [5]	63	142	76	-	. 11	3
Pycnopsyche [3]	-	-	-	1	-	-
True Flies						
Antocha [5]	-	-	-	-	1	-
Atherix [4]	_	3	-	9	-	1
Dicranota [4]	_	-	1	-	3	-
Midges						2
Brillia [?]	_	-	86	-	-	2
Cryptochironomu	s[8] -	_	-	11	-	-
Cricotopus [8]	-	-	17	-	27	-
Microtendipes [6	1 -	-	69	44	4	4
Polypedilum [6]	-	-	52	11	4	4
Eukiefferiella [4]	1 -	_	-	-	7	-
	[6] -	-	360	11	-	13
	?] -	-	17	-	2	- 2.5
Thienemannimyi		-	120	178	2	35
Stenochironomus	[3] -	-	-	11	-	-
	4] -	-	17	-	-	- 2
Dicrotendipes [6]	_	-	=	-	-	2
Ababesmyia [6]	-	-	-	-	-	2
Ababeshiyia [0]						

Little Cannon Near Sogn (LCS-6)

%0 %0 6							
8 0% 9% 3%							
7 0% 0% 3% 1%							
AANK 6 2% 79% 27% 58%	e Rank		2 2 3	4 n	n 9	2 8	6
ANCE F 5 85% 7% 6% 18%	Tolerance Rank				2000 - 1000 P - 100 O		
PERCENT IN TOLERANCE RANK 2 3 4 5 6 0% 7% 6% 85% 2% 0% 4% 7% 7% 79% 0% 2% 53% 6% 27% 0% 4% 15% 18% 58%	Ţ						
3 7% 4% 2% 4% 4%	nk T				18%		
PERCE 2 0% 0% 0% 0%	ice Ra		15%				
- 0% 0% 0%	olerar						
TOTAL 241 1086 297 1624	Percent Macroinvertebrate by Tolerance Rank	4%					
60000	brat						
ATING 8 0 28 27 55	nverte	1 3%					
NCE R/ 7 0 0 9	acroil						
NUMBER OF INSECTS BY TOLERANCE RATING 2 3 4 5 6 7 8 0 16 14 206 5 0 0 2 42 78 76 860 0 28 0 5 158 18 80 9 27 2 63 250 300 945 9 55	ent M					%	
S BY T 5 206 76 18 300	Perc					29%	
NSECT 4 14 78 158 250							
SR OF 1 3 16 42 5 5							
NUMBI 2 0 2 0 0							
-0000							
Site LCS 1994 LCS 1995 LCS 1996	3						

LITTLE CANNON ONE MILE SOUTH OF SOGN [LCS]

DATE	JULY 1994	JULY 1995	JUNE 1996	JULY 1996
SURFACE WATER NITRATE NITROGEN AMMONIA NITROGEN KJELDAHL NITROGEN ORTHOPHOSPHATE TOTAL PHOSPHORUS	 		5.65 0.041 5.74 0.021 0.064	2.44 0.018 2.62 0.023 0.06
PORE WATER NITRATE NITROGEN AMMONIA NITROGEN KJELDAHL NITROGEN ORTHOPHOSPHATE TOTAL PHOSPHORUS			3.84 0.869 5.37 0.005 0.038	1.05 0.951 2.88 0.014 0.068
STREAM LOAD TURBIDITY TOTAL SUSPENDED SOLIDS TOTAL VOLATILE SOLIDS CONDUCTIVITY	 0.695	 0.645	25 92.51 18.24 0.662	6 80.21 18.21 0.655
OTHER pH ALKALINITY TEMPERATURE	8.2 18	 	8.1 360 19.8	8.3 340 22.4

LITTLE CANNON AT SOGN

The Little Cannon River empties into the Cannon River at river mile 25 in downtown Cannon Falls. This site is located about 9 miles upstream from the mouth a half mile south of Sogn. The sample site is located in a pasture that is used by cattle during the summer months. The banks show severe signs of erosion and the cattle are contributing to the erosion. The substrate is composed of gravel and sand in the areas where the current is fast, however where the current slows much silt begins to settle out and covers the sand and gravel. The Corps of Engineers modified the channel above the bridge in 1995 by placing limestone rip rap along the outside bank that was being undercut and threatening to wash out the bridge approach on the east bank. Just upstream from this location is an artesian spring that flows all year long at a fairly constant flow. The QHEI at this site is the lowest value of all sites sampled. The low score is primarily due to the lack of instream cover and the erosion of the banks. The flow at the site varies because there is a variety of riffles, runs, and pools.

The dominant species at the sample site were midges and caddisflies. The lack of larger substrates may well influence the species that inhabit this site. Only one stonefly was found at the site over the 3 years of the study. The average tolerance range was quite narrow (3-6), which indicates that this site has been impacted significantly by human activities. Tolerance rank 6 made up 60% of the insects sampled and 92% of the insects collected were of tolerance rank 4 - 6. All of the indices showed increases each year over the 3 years. The scraper to filterer ratio changed significantly in year 3 showing a significant increase in scrapers.

Nutrient values at this site were in the average range compared to the other sites tested. Stream loading however showed to be a greater problem at this site with total suspended solids and volatile solids ranking quite high compared to most of the other sites. The alkalinity also ranked as being one of the highest.

This site is most likely to always carry a larger bed load than most streams because of the steep gradient and the geology of the area. Much of the stream bank erosion could be reduced if efforts were taken to stabilize the banks and cattle were prevented from pasturing along the banks of the stream. Limiting the access of cattle to the stream would also improve the nutrient loading as well.